Exercise 2.7

1. If $1 + 2i$ is a root of $z^3 + 2z^2 - 3z + 20 = 0$, find the other two roots.

2. If $-2 + 3i$ is a root of $z^3 - z^2 - 7z - 65 = 0$, find the other two roots.

3. Show that $z = 2$ is a root of the equation $z^3 - 8z^2 + 46z - 68 = 0$ and find the other two roots.

4. (i) Express in the form $a + bi$: (a) $(1 + i)^2$ (b) $(1 + i)^3$.

(ii) Show that $1 + i$ is a root of $z^3 - 5z^2 + 8z - 6 = 0$ and find the other two roots.

5. Verify that $1 + 3i$ is a root of the equation $z^3 - 7z^2 + 20z - 50 = 0$ and find the other roots.

6. Verify that $-2 + 2i$ is a root of the equation $z^3 + 3z^2 + 4z - 8 = 0$ and find the other roots.

7. Verify that $2 - i$ is a root of the equation $z^3 - 11z + 20 = 0$ and find the other roots.

8. Verify that $2 + 3i$ is a root of the equation $2z^3 - 9z^2 + 30z - 13 = 0$ and find the other roots.

9. Verify that i is a root of the equation $z^3 - iz^2 - 9z + 9i = 0$ and find the other roots.

10. (i) Express in the form $a + bi$: (a) $(1 - i)^2$ (b) $(1 - i)^3$.

(ii) If $1 - i$ is a root of the equation $z^3 - 4z^2 + 6z + k = 0$, $k \in \mathbb{R}$, find the value of k and the other roots.

11. If $1 - 2i$ is a root of the equation $z^3 + kz^2 + 7z + k - 2 = 0$, $k \in \mathbb{R}$, find the value of k and the other roots.

12. One root of the equation $z^3 + az^2 + bz - 4 = 0$, $a, b \in \mathbb{R}$, is $1 + i$.

Find the value of a and the value of b.

13. One root of the equation $z^3 + pz^2 + q = 0$, $p, q \in \mathbb{R}$, is $4 - i$.

Find the value of p and the value of q.

14. If $(z - 2)(z^2 + az + b) = z^3 - 4z^2 + 6z - 4$, $a, b \in \mathbb{Z}$, find the value of a and the value of b.

15. Let $p(z) = z^3 + (4 - 2i)z^2 + (5 - 8i)z - 10i$, where $i^2 = -1$.

Determine the real numbers a and b if $p(z) = (z - 2i)(z^2 + az + b)$.

16. (i) Factorise $z^2 - 5z + 6$ and, hence, solve the equation $z^2 - 5z + 6 = 0$.

(ii) Show that $z^2 - 5z + 6$ is a factor of $z^3 + (-4 + i)z^2 + (1 - 5i)z + 6(1 + i)$.

(iii) Find the three roots of the equation $z^3 + (-4 + i)z^2 + (1 - 5i)z + 6(1 + i) = 0$.

17. (i) Factorise $z^2 - 4$ and, hence or otherwise, solve the equation $z^2 - 4 = 0$.

(ii) Show that $z^2 - 4$ is a factor of $z^3 + (3 + i)z^2 - 4z - 4(3 + i)$.

(iii) Find the three roots of the equation $z^3 + (3 + i)z^2 - 4z - 4(3 + i) = 0$.

18. ki is a root of the equation $2z^3 - z^2 + 18z - 9 = 0$, $k \in \mathbb{R}$.

Find the values of k and the three roots of the equation $2z^3 - z^2 + 18z - 9 = 0$.
Polar Coordinates and the Polar Form of a Complex Number

Polar Coordinates

Consider the complex number $z = x + yi$. The position of z on the Argand diagram can be given by Cartesian, or rectangular coordinates, (x, y). An alternative way of describing the position of z is to give its modulus, r and its argument, θ.

(r, θ) are called the polar coordinates of the complex number.

1. Modulus

The modulus $r = |z| = \sqrt{x^2 + y^2}$.

The modulus is the distance from the origin to the point representing the complex number on the Argand diagram.

2. Argument

The argument $= \theta$ (usually in radians).

The argument, θ, is the angle between the positive real-axis and the line from the origin to the point $z = x + yi$.

Note: Drawing a diagram can be a very good aid in calculating θ.

Polar Form

Having calculated r and θ, there is a simple connection between the Cartesian coordinates (x, y) and the polar coordinates (r, θ).

$$\frac{x}{r} = \cos \theta \quad \frac{y}{r} = \sin \theta$$

$$x = r \cos \theta \quad y = r \sin \theta$$

Now we can write $z = x + yi$ in terms of r and θ.

$$z = x + yi$$

$$z = (r \cos \theta) + (r \sin \theta)i$$

$$z = r(\cos \theta + i \sin \theta)$$

This is called the polar form of the complex number.

The polar form of the complex number $z = x + yi$ is:

$$z = r(\cos \theta + i \sin \theta).$$

Note: It is conventional to write i before $\sin \theta$.

In other words, $i \sin \theta$ is preferable to $\sin \theta i$.
Example

Express each of these complex numbers in the form \(r(\cos \theta + i \sin \theta) \), where \(i^2 = -1 \):

(i) \(-1 + i\)
(ii) \(-\sqrt{3} - i\)
(iii) \(\frac{1}{2} + \frac{\sqrt{3}}{2}i\)
(iv) \(-6i\)

Solution:

(i) \(-1 + i = (-1, 1)\)
\[r = |-1 + i| = \sqrt{(-1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2} \]
\[\tan \alpha = \frac{1}{-1} = -1 \quad \Rightarrow \quad \alpha = \frac{\pi}{4} \]
\[\therefore \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \]
\[-1 + i = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) \]

(ii) \(-\sqrt{3} - i = (-\sqrt{3}, -1)\)
\[r = |-\sqrt{3} - i| = \sqrt{(-\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \]
\[\tan \alpha = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} = \frac{\pi}{6} \]
\[\therefore \theta = \pi + \frac{\pi}{6} = \frac{7\pi}{6} \]
\[-\sqrt{3} - i = 2 \left(\cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6} \right) \]

(iii) \(\frac{1}{2} + \frac{\sqrt{3}}{2}i = \left(\frac{1}{2} \right) \left(\frac{\sqrt{3}}{2} \right)\)
\[r = \left| \frac{1}{2} + \frac{\sqrt{3}}{2}i \right| = \sqrt{\left(\frac{1}{2} \right)^2 + \left(\frac{\sqrt{3}}{2} \right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 \]
\[\tan \theta = \frac{\sqrt{3}}{1} = \sqrt{3} \quad \Rightarrow \quad \theta = \frac{\pi}{3} \]
\[\therefore \frac{1}{2} + \frac{\sqrt{3}}{2}i = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \]
(iv) \(-6i = 0 - 6i = (0, -6)\)
\[r = |0 - 6i| = \sqrt{0^2 + (-6)^2} = \sqrt{0 + 36} = \sqrt{36} = 6 \]
\[\theta = \frac{3\pi}{2} \]
\[\therefore -6i = 6 \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right) \]

Sometimes we are given a number in polar form \(r(\cos \theta + i \sin \theta)\), and asked to write it in Cartesian form, \(x + yi\). Again, it is good practice to draw a diagram.

Example

Express \(4 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)\) in the form \(x + yi\).

Solution:
\(\frac{5\pi}{6}\) is in the 2nd quadrant, so:
\[\cos \frac{5\pi}{6} = -\cos \frac{\pi}{6} = -\frac{\sqrt{3}}{2} \]
\[\sin \frac{5\pi}{6} = \sin \frac{\pi}{6} = \frac{1}{2} \]
\[\therefore 4 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right) = 4 \left(\frac{\sqrt{3}}{2} + i \frac{1}{2} \right) = -2\sqrt{3} + 2i \]

Exercise 2.8

Express each of the following complex numbers in the form \(r(\cos \theta + i \sin \theta)\), where \(i^2 = -1\):
1. \(1 + i\)
2. \(\sqrt{3} + i\)
3. \(-5\)
4. \(3i\)
5. \(-2i\)
6. \(-1 - \sqrt{3}i\)
7. \(1 - i\)
8. \(2 - 2i\)
9. \(-\sqrt{2} - \sqrt{2}i\)
10. \(-3 + \sqrt{3}i\)
11. \(\frac{1}{2} - \frac{\sqrt{3}}{2}i\)
12. \(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\)

Express each of the following in the form \(a + bi\):
13. \(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\)
14. \(\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)\)
15. \(6 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)\)
16. \(2\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)\)
17. \(10 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)\)
18. \(2 \left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} \right)\)
Express each of the following complex numbers in the form $r(\cos \theta + i \sin \theta)$, where $i^2 = -1$:

19. $(1+i)^2$
20. $\frac{2}{1-i}$
21. $\frac{2}{\sqrt{3}+i}$
22. $\frac{1}{(1-i)^2}$

23. $z_1 = 2(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$ and $z_2 = 5\left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right)$, where $i^2 = -1$.
 Calculate $z_1 z_2$ in the form $x+yi$, where $x, y \in \mathbb{R}$.

24. $z_1 = \sqrt{2}\left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$ and $z_2 = 4\left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2}\right)$, where $i^2 = -1$.
 Calculate $z_1 z_2$ in the form $x+yi$, where $x, y \in \mathbb{R}$.

25. $z_1 = 4\left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)$ and $z_2 = 2\left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right)$, where $i^2 = -1$.
 Calculate $\sqrt{z_1 z_2}$.

26. $z_1 = 2\left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}\right)$ and $z_2 = \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right)$.
 Calculate $\frac{z_1}{z_2}$ in the form $x+yi$, where $x, y \in \mathbb{R}$.

27. $(a+bi)(2+5i) = 7+3i$. Express $a+bi$ in the form $r \cos \theta + i \sin \theta$.

De Moivre’s Theorem

\[[r(\cos \theta + i \sin \theta)]^n = r^n(\cos n\theta + i \sin n\theta)], \text{ where } n \in \mathbb{Q}.

There are three applications of De Moivre’s Theorem

1. Finding powers of complex numbers
2. Proving trigonometric identities
3. Finding roots of complex numbers.

1. Finding Powers of Complex Numbers

Method:

1. Write the number in polar form.
2. Apply De Moivre’s Theorem.
3. Simplify the result.

Note: After applying De Moivre’s Theorem the angle can be very large. However, we can keep subtracting 2π until the angle is in the range $0 < \theta < 2\pi$.

63
Example

Express \((-1 + i)^{10}\) in the form \(x + yi\). \(x, y \in \mathbb{R}\) and \(i^2 = -1\).

Solution:

1. \(r = |-1 + i| = \sqrt{(-1)^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}\)
 \[\tan \alpha = \frac{1}{1} = 1 \Rightarrow \alpha = \frac{\pi}{4}\]
 \[\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}\]
 \[\therefore (-1 + i) = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)\] (rectangular form to polar form)

2. \[(-1 + i)^{10} = \left[\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) \right]^{10}\] (raise both sides to the power of 10)
 \[= (\sqrt{2})^{10} \left[\cos 10 \left(\frac{3\pi}{4} \right) + i \sin 10 \left(\frac{3\pi}{4} \right) \right]\] (apply De Moivre’s Theorem)
 \[= 32 \left(\cos \frac{30\pi}{4} + i \sin \frac{30\pi}{4} \right)\]
 \[= 32 \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right)\]
 \[= 32(0 - i) = 0 - 32i\]
 \[\therefore (-1 + i)^{10} = 0 - 32i\]

Exercise 2.9

Use De Moivre’s Theorem to write each of the following in the form \(a + bi\):

1. \(\left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)^6\)
 2. \(\left(\cos \frac{\pi}{5} + i \sin \frac{\pi}{5} \right)^5\)
 3. \(\left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)^{10}\)
 4. \(\left(\cos \frac{\pi}{8} + i \sin \frac{\pi}{8} \right)^{12}\)
 5. \(\left[2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \right]^6\)
 6. \(\left[\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right]^6\)
 7. \(\left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)^8\)
 8. \(\left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)^7\)

9. Express \(\sqrt{3} + i\) in the form \(r(\cos \theta + i \sin \theta)\), where \(i^2 = -1\).

 Hence, use De Moivre’s Theorem to express \((\sqrt{3} + i)^3\) in the form \(a + bi\).

Use De Moivre’s Theorem to write each of the following in the form \(x + yi\):

10. \((1 + i)^8\)
 11. \((-1 + i)^4\)
 12. \((\sqrt{3} - i)^3\)
 13. \((-2 - 2i)^5\)
14. \((\sqrt{2} - \sqrt{2}i)^6\)
15. \((2 - 2\sqrt{3}i)^4\)
16. \((\frac{\sqrt{3}}{2} + \frac{1}{2}i)^9\)
17. \((\frac{1}{2} - \frac{\sqrt{3}}{2}i)^{20}\)

18. Show that: \(2(1 - i)^4 = (1 + \sqrt{3}i)^3\).

19. Evaluate: \(\left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right)^4 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)^2\).

20. Express \(\frac{1 + 3i}{2 + i}\) in the form \(r(\cos \theta + i \sin \theta)\), where \(i^2 = -1\).

Hence, evaluate \(\left(\frac{1 + 3i}{2 + i}\right)^{10}\).

21. \(z = \frac{1 + \sqrt{3}i}{2}\). Show that \(z^{13} = z\).

22. (i) Express \(\frac{\sqrt{3} + i}{1 + \sqrt{3}i}\) in the form \(r(\cos \theta + i \sin \theta)\), where \(i^2 = -1\).

(ii) Hence, evaluate \(\left(\frac{\sqrt{3} + i}{1 + \sqrt{3}i}\right)^6\).

2. Proving Trigonometric Identities

De Moivre’s Theorem can be used to prove trigonometric identities by expressing \(\cos n\theta\) and \(\sin n\theta\) as polynomials in \(\cos \theta\) and \(\sin \theta\), respectively.

Example

Using De Moivre’s Theorem, prove that: \(\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta\).

Solution:

De Moivre’s Theorem: \((\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta\).

Therefore, by De Moivre’s Theorem:

\[
\begin{align*}
\cos 3\theta + i \sin 3\theta = & \left(\cos \theta + i \sin \theta\right)^3 \\
= & \left(\binom{3}{0} \cos^3 \theta + \binom{3}{1} \cos^2 \theta \sin \theta + \binom{3}{2} \cos \theta \sin^2 \theta + \binom{3}{3} \sin^3 \theta\right) + i \left(3 \cos^3 \theta \sin \theta - 3 \cos \theta \sin^2 \theta\right) \\
= & \cos^3 \theta + 3 \cos^2 \theta \sin \theta + 3 \cos \theta \sin^2 \theta + i \sin^3 \theta \\
\end{align*}
\]

\[
\begin{align*}
\cos 3\theta + i \sin 3\theta = & \cos^3 \theta + 3 \cos^2 \theta \sin \theta - 3 \cos \theta \sin^2 \theta - i \sin^3 \theta \\
\end{align*}
\]

\((i^2 = -1, \ i^3 = -i)\)

\[
\begin{array}{cccc}
R & I & R & I \\
\end{array}
\]

Equating the real parts:

\[
\begin{align*}
\cos 3\theta = & \cos^3 \theta - 3 \cos \theta \sin^2 \theta \\
\cos 3\theta = & \cos^3 \theta - 3 \cos \theta \sin^2 \theta + \sin^2 \theta = 1 - \cos^2 \theta \\
\cos 3\theta = & \cos^3 \theta - 3 \cos \theta + 3 \cos^3 \theta \\
\cos 3\theta = & 4 \cos^3 \theta - 3 \cos \theta \\
\end{align*}
\]

65
Exercise 2.10

1. Using De Moivre’s Theorem, prove that:
 (i) $\sin 2\theta = 2 \sin \theta \cos \theta$
 (ii) $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
 Hence, express $\tan 2\theta$ in terms of $\tan \theta$.

2. Using De Moivre’s Theorem, prove that:
 (i) $\sin 3\theta = 3 \cos^2 \theta \sin \theta - \sin^3 \theta = 3 \sin \theta - 4 \sin^3 \theta$
 (ii) $\cos 3\theta = \cos^3 \theta - 3 \cos \theta \sin^2 \theta = 4 \cos^3 \theta - 3 \cos \theta$
 Hence, express $\tan 3\theta$ in terms of $\tan \theta$.

3. Using De Moivre’s Theorem, prove that:
 (i) $\cos 4\theta = 8 \cos^4 \theta - 8 \cos^2 \theta + 1$
 (ii) $\sin 4\theta = 4 \cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta$
 Hence, express $\tan 4\theta$ in terms of $\tan \theta$.

4. Using De Moivre’s Theorem, prove that:
 (i) $\sin 5\theta = 16 \sin^5 \theta - 20 \sin^3 \theta + 5 \sin \theta$
 (ii) $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$

3. Finding Roots of Complex Numbers

From trigonometry we know that:

$$\cos \theta = \cos(\theta \pm 2\pi) = \cos(\theta \pm 4\pi) = \cos(\theta \pm 6\pi) = \cos(\theta \pm 2n\pi), \quad n \in \mathbb{Z}.$$

$$\sin \theta = \sin(\theta \pm 2\pi) = \sin(\theta \pm 4\pi) = \sin(\theta \pm 6\pi) = \cos(\theta \pm 2n\pi), \quad n \in \mathbb{Z}.$$

In other words, when $2\pi, 4\pi, 6\pi, \ldots$ is added to, or subtracted from, an angle, the value of sine or cosine is unchanged.

Thus, we can write:

$$r(\cos \theta + i \sin \theta) = r[\cos(\theta + 2n\pi) + i \sin(\theta + 2n\pi)], \text{ for } n \in \mathbb{Z}.$$

When a complex number is written in the form $r[\cos(\theta + 2n\pi) + i \sin(\theta + 2n\pi)]$, the complex number is said to be written in general polar form.

Method for Finding Roots:

1. Write the number in polar form.
2. Write the number in general polar form.
3. Apply De Moivre’s Theorem.
4. Let $n = 0, 1, 2, \ldots$ (as required).
Example

Use De Moivre’s Theorem to find the three roots of the equation $z^3 - 8i = 0$.

Solution:

$$z^3 - 8i = 0$$
$$z^3 = 8i$$
$$z = 0 + 8i$$ \hspace{1cm} \text{(rectangular form)}

1. Write $0 + 8i$ in polar form.

$$0 + 8i = (0, 8)$$
$$r = 8 \text{ and } \theta = \frac{\pi}{2}$$

Polar form: $0 + 8i = 8 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$

2. Write in general polar form.

$$8 \left[\cos \left(\frac{\pi}{2} + 2n\pi \right) + i \sin \left(\frac{\pi}{2} + 2n\pi \right) \right]$$

$$= 8 \left[\cos \left(\frac{\pi + 4n\pi}{2} \right) + i \sin \left(\frac{\pi + 4n\pi}{2} \right) \right]$$

(add $2n\pi$ to the angle)

$$\left(\frac{\pi}{2} + 2n\pi = \frac{\pi + 4n\pi}{2} \right)$$

3. Apply De Moivre’s Theorem.

$$z^3 = 8 \left[\cos \left(\frac{\pi + 4n\pi}{2} \right) + i \sin \left(\frac{\pi + 4n\pi}{2} \right) \right]$$

$$z = \left[8 \left[\cos \left(\frac{\pi + 4n\pi}{2} \right) + i \sin \left(\frac{\pi + 4n\pi}{2} \right) \right] \right]^{1/3}$$

(take the cube root of both sides)

$$z = 8^{1/3} \left[\cos \left(\frac{\pi + 4n\pi}{6} \right) + i \sin \left(\frac{\pi + 4n\pi}{6} \right) \right]$$

(apply De Moivre’s Theorem)

$$z = 2 \left[\cos \left(\frac{\pi + 4n\pi}{6} \right) + i \sin \left(\frac{\pi + 4n\pi}{6} \right) \right]$$

4. Let $n = 0, 1$ and 2 to get the three different roots.

(Note: Letting $n = 3, 4, 5, \ldots$ merely regenerates the same roots.)

$n = 0$: $z = 2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) = 2 \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i \right) = \sqrt{3} + i$

$n = 1$: $z = 2 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right) = 2 \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i \right) = -\sqrt{3} + i$

$n = 2$: $z = 2 \left(\cos \frac{9\pi}{6} + i \sin \frac{9\pi}{6} \right) = 2 \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right) = 2(0 - i) = -2i$

Notes:

1. The same method is used if the index is a rational number (fraction).
 For example, $(1 - \sqrt{3}i)^{\frac{3}{2}}$.

2. The number of different roots is the same as the bottom number in the fraction.
 Thus, $(1 - \sqrt{3}i)^{\frac{3}{2}}$ will have two different roots.
Example

Express \(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\) in the form \(r(\cos \theta + i \sin \theta)\) where \(i^2 = -1\).

Using De Moivre’s Theorem, find two values of \((-\frac{1}{2} + \frac{\sqrt{3}}{2}i)^{32}\).

Solution:

1. Write \((-\frac{1}{2} + \frac{\sqrt{3}}{2}i)\) in polar form.

\[
-\frac{1}{2} + \frac{\sqrt{3}}{2}i = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
\]

\[
r = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1
\]

\[
\tan \alpha = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \Rightarrow \alpha = \frac{\pi}{3}
\]

\[
\therefore \theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}
\]

\[
-\frac{1}{2} + \frac{\sqrt{3}}{2}i = 1 \left(\cos \left(\frac{2\pi}{3} + 2\pi n\right) + i \sin \left(\frac{2\pi}{3} + 2\pi n\right)\right)
\]

2. Write in general polar form.

\[
= \cos \left(\frac{2\pi + 6\pi n}{3}\right) + i \sin \left(\frac{2\pi + 6\pi n}{3}\right) = \cos \left(\frac{2\pi}{3} + 2\pi n\right) + i \sin \left(\frac{2\pi}{3} + 2\pi n\right)
\]

(3) Apply De Moivre’s Theorem.

\[
\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{32} = \cos \left(\frac{2\pi + 6\pi n}{3}\right) + i \sin \left(\frac{2\pi + 6\pi n}{3}\right)
\]

\[
\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{32} = \cos \left(\frac{3}{2} \left(\frac{2\pi + 6\pi n}{3}\right)\right) + i \sin \left(\frac{3}{2} \left(\frac{2\pi + 6\pi n}{3}\right)\right)
\]

(4) Let \(n = 0\) and \(1\) to find the two roots.

(Note: Letting \(n = 2, 3, 4, \ldots\) merely regenerates the same roots.)

\(n = 0: \quad \cos \pi + i \sin \pi = -1 + i(0) = -1\)

\(n = 1: \quad \cos 4\pi + i \sin 4\pi = \cos 2\pi + i \sin 2\pi = 1 + i(0) = 1\)
Exercise 2.11

1. Express -1 in the form $r(\cos \theta + i \sin \theta)$, where $i^2 = -1$.
 Use De Moivre’s Theorem to find the three roots of the equation $z^3 = -1$.
 If the roots are z_1, z_2 and z_3, show that $z_1 + z_2 + z_3 = 0$.

2. Express $-8i$ in the form $r(\cos \theta + i \sin \theta)$, where $i^2 = -1$.
 Use De Moivre’s Theorem to find the three roots of the equation $z^3 + 8i = 0$.
 If the roots are α, β and γ, show that $\alpha + \beta + \gamma = 0$.

Use De Moivre’s Theorem to find all the solutions of each of the following equations:

3. $z^2 = -4i$

4. $z^2 = 2 - 2\sqrt{3}i$

5. $z^3 = -8$

6. $z^4 = 1$

7. $z^3 = -64i$

8. $z^3 = 27i$

9. Use De Moivre’s Theorem to find the six roots of the equation $z^6 + 64 = 0$.

10. Write $-8 - 8\sqrt{3}i$ in the form $r(\cos \theta + i \sin \theta)$, where $i^2 = -1$.
 Use De Moivre’s Theorem to find the four roots of the equation $z^4 = -8 - 8\sqrt{3}i$.

11. Write $1 - \frac{\sqrt{3}}{2} i$ in the form $r(\cos \theta + i \sin \theta)$, where $i^2 = -1$.

 Using De Moivre’s Theorem, find the two values of \(\left(\frac{1}{2} - \frac{\sqrt{3}}{2} i \right)^{3/2} \).

12. Write $2(-1 + \sqrt{3}i)$ in the form $r(\cos \theta + i \sin \theta)$, where $i^2 = -1$.
 Using De Moivre’s Theorem, find the two values of \([2(-1 + \sqrt{3}i)]^{3/2} \).

13. Write $4i$ in the form $r(\cos \theta + i \sin \theta)$, where $i^2 = -1$.
 Using De Moivre’s Theorem, find the two values of \((4i)^{5/2} \).
Chapter 7

Sequences and Series

Sequence

A sequence is a set of numbers, separated by commas, in which each number after the first is formed by some definite rule.

Note: Each number in the set is called a term of the sequence.

1. 5, 9, 13, 17, . . .
 Each number after the first is obtained by adding 4 to the previous number.
 In this example, 5 is called the first term, 9 the second term and so on.

2. 1, 3, 9, 27, . . .
 Each number after the first is obtained by multiplying the previous number by 3.
 In this example, 1 is called the first term, 3 the second term and so on.

General Term, \(u_n \)

The terms of a sequence can be expressed as \(u_1, u_2, u_3, u_4, \ldots \).
A sequence which follows a regular pattern can be described by a rule, or formula, called the general term. We use the symbol \(u_n \) to denote the general term. \(u_n \) may be used to generate terms of the sequence (sometimes \(T_n \) is used instead of \(u_n \)).
Consider the sequence whose general term is: \(u_n = n^2 + 3n \).
To generate any term of the sequence, put in the appropriate value for \(n \) on both sides:

\[
\begin{align*}
 u_n &= n^2 + 3n \\
 u_1 &= (1)^2 + 3(1) = 1 + 3 = 4 \\
 u_4 &= (4)^2 + 3(4) = 16 + 12 = 28 \\
 u_7 &= (7)^2 + 3(7) = 49 + 21 = 70
\end{align*}
\]

The notation \(u_n = n^2 + 3n \) is very similar to function notation where \(n \) is the input and \(u_n \) is the output, i.e. \((n, u_n)\).

Note: \(n \) used with this meaning must always be a non-negative whole number.
It can never be negative or fractional. In other words, \(n \in \mathbb{N} \).
Example

A sequence is given by \(u_n = n^2 - 3n \), where \(n \in \mathbb{N}_0 \).

(i) Find \(u_{10} \).

(ii) For what value of \(n \in \mathbb{N}_0 \) is \(u_n = 40 \)?

Solution:

(i) \(u_n = n^2 - 3n \)

\[
\begin{align*}
u_{10} &= (10)^2 - 3(10) \\
 &= 100 - 30 \\
 &= 70
\end{align*}
\]

Given: \(u_n = 40 \)

\[
\begin{align*}
&\therefore n^2 - 3n = 40 \\
&n^2 - 3n - 40 = 0 \\
&(n + 5)(n - 8) = 0 \\
&n = -5 \quad \text{or} \quad n = 8
\end{align*}
\]

Thus, \(n = 8 \), as \(n \in \mathbb{N}_0 \).

Example

If \(u_n = (n - 10)3^n \), verify that: \(u_{n+2} - 6u_{n+1} + 9u_n = 0 \).

Solution:

The basic idea is to express \(u_{n+1} \) and \(u_{n+2} \) in terms of \(n \) and \(3^n \), the lowest power of 3, and substitute these into the given expression.

To find \(u_{n+1} \), replace \(n \) with \((n + 1) \); to find \(u_{n+2} \), replace \(n \) with \((n + 2) \).

\[
\begin{align*}
u_n &= (n - 10)3^n \\
u_{n+1} &= [(n + 1) - 10]3^n = (n + 1 - 10)3^n = (n - 9)3^n \\
u_{n+2} &= [(n + 2) - 10]3^{n+2} = (n + 2 - 10)3^{n+2} = n - 8)3^{n+2} = (n - 8)9 \cdot 3^n = 9(n - 8)3^n
\end{align*}
\]

\[
\begin{align*}
u_{n+2} - 6u_{n+1} + 9u_n
\end{align*}
\]

\[
\begin{align*}
&\downarrow \hspace{1cm} \downarrow \hspace{1cm} \downarrow \\
&= [9(n - 8)3^n] - 6[3(n - 9)3^n] + 9[(n - 10)3^n] \\
&= 9(n - 8)3^n - 18(n - 9)3^n + 9(n - 10)3^n \\
&= 3^n[9(n - 8) - 18(n - 9) + 9(n - 10)] \quad \text{(factor out } 3^n) \\
&= 3^n[9n - 72 - 18n + 162 + 9n - 90] \\
&= 3^n[18n - 18n + 162 - 162] \\
&= 3^n[0] \\
&= 0
\end{align*}
\]
Example

If \(u_n = \frac{n}{n+1} \), show that \(u_{n+1} > u_n \).

Solution:
\[
\begin{align*}
 u_n &= \frac{n}{n+1} \quad \therefore \quad u_{n+1} = \frac{(n+1)}{(n+2)} = \frac{n+1}{n+2} \\
 u_{n+1} &> u_n \\
 \frac{n+1}{n+2} &> \frac{n}{n+1} \\
 (n+1)(n+1) &> n(n+2) \quad \left(\text{multiply both sides by } (n+2) \text{ and } (n+1); \quad (n+2) \text{ and } (n+1) \text{ are both positive as } n \in \mathbb{N}_0 \right) \\
 n^2 + 2n + 1 &> n^2 + 2n \\
 1 &> 0 \quad \text{true} \quad (\text{subtract } n^2 \text{ and } 2n \text{ from both sides}) \\
 \therefore \quad u_{n+1} &> u_n
\end{align*}
\]

Notes: If \(u_{n+1} > u_n \) for all \(n \in \mathbb{N} \), then the sequence \(u_n \) is (monotonic) increasing. If \(u_{n+1} < u_n \) for all \(n \in \mathbb{N} \), then the sequence \(u_n \) is (monotonic) decreasing.

Exercise 7.1

1. If \(u_n = 3n + 2 \), find \(u_1 \) and \(u_2 \). Show that \(u_{n+1} - u_n = 3 \).

2. (i) If \(u_n = n^2 - 3 \), find \(u_1 \), \(u_2 \) and \(u_{n+1} \).
 (ii) If \(u_{n+1} - u_n = an + b \), \(a, b \in \mathbb{R} \), find the value of \(a \) and the value of \(b \).
 (iii) If \(u_n = 222 \), find the value of \(n \), \(n \in \mathbb{N} \).

3. (i) If \(u_n = n^2 + 5n \), find \(u_1 \), \(u_2 \) and \(u_{n+1} \).
 (ii) If \(u_{n+1} - u_n = pn + q \), \(p, q \in \mathbb{R} \), find the value of \(p \) and the value of \(q \).
 (iii) If \(u_n = 66 \), find the value of \(n \), \(n \in \mathbb{N} \).
 (iv) Show that: \(u_{n+1} > u_n \).

4. \(u_n = an^2 + bn \), where \(a, b \in \mathbb{R} \). If \(u_1 = 7 \) and \(u_2 = 20 \):
 (i) find the values of \(a \) and \(b \) \hspace{1cm} (ii) find the value of \(n \in \mathbb{N} \) if \(u_n = 64 \).

5. If \(u_n = 2^n + 1 \), find \(u_1 \), \(u_2 \) and \(u_{n+1} \). Show that \(u_{n+1} > u_n \).

6. If \(u_n = (5n - 2)3^n \), show that \(u_{n+1} - 3u_n = 5(3)^{n+1} \).

7. If \(u_n = (n + 1)5^n \), show that \(u_{n+2} - 10u_{n+1} + 25u_n = 0 \).

8. If \(u_n = \frac{1}{3}(9^n - 3^n) \), show that \(u_{n+1} = 3u_n + 2(9)^n \).

9. If \(u_n = 2^{n-1} + 2^{n-1} \), show that \(u_{n+1} - 2u_n - 2^n = 0 \).
10. If \(u_n = 3 + n(n - 1)^2 \), show that \(u_{n+1} - u_n = 3n^2 - n \).

11. If \(u_n = n^2 + 4n \), find \(u_1 \) and \(u_2 \). Simplify: \((u_{n+2} - u_{n+1}) - (u_{n+1} - u_n) \).

12. If \(u_n = 4(n + 1)! \), show that \(u_{n+1} - nu_n = 2u_n \).

13. If \(u_n = \frac{1}{n} \), show that \(u_{n+1} < u_n \), where \(n \in \mathbb{N}_0 \).

14. If \(u_n = \frac{1}{n^2} \), show that \(u_{n+1} < u_n \), where \(n \in \mathbb{N}_0 \).

15. If \(u_n = \frac{1}{2^n} \), show that \(u_{n+1} < u_n \), where \(n \in \mathbb{N}_0 \).

16. If \(u_n = \frac{n + 3}{2n + 1} \), show that \(u_{n+1} < u_n \), where \(n \in \mathbb{N}_0 \).

17. The \(n \)th term of a sequence is given by \(u_n = a(2^n) + bn + c \), where \(a, b, c \in \mathbb{R} \).

If \(u_1 = 0 \), \(u_2 = 10 \) and \(u_3 = 26 \), find:

(i) the value of \(a, b \) and \(c \)
(ii) \(u_4 \).

Series and Sigma (Σ) Notation

When the terms of a sequence are added together the sum of the terms is called a series.

For example,

Sequence: \(1, 4, 7, 10, \ldots \)
Series: \(1 + 4 + 7 + 10 + \cdots \)

A **finite series** is one which ends after a finite number of terms.

An **infinite series** is one that continues indefinitely.

The sum of the first \(n \) terms of a series is denoted by \(S_n \), where:
\[
S_n = u_1 + u_2 + u_3 + \cdots + u_n
\]

This is an example of a finite series, as there is a finite number of terms.

The finite series \(S_n \) can be expressed more concisely using sigma (Σ) notation.

\[
S_n = u_1 + u_2 + u_3 + \cdots + u_n = \sum_{r=1}^{n} u_r
\]

Notes: The letter \(r \) (called a **dummy variable**) does not appear when \(\sum_{r=1}^{n} u_r \) is written out.

\[
\sum_{r=1}^{n} u_r = u_1 + u_2 + u_3 + \cdots + u_n.
\]

Any other letter could also have been used, for example \(\sum_{i=1}^{n} u_i \) or \(\sum_{k=1}^{n} u_k \).
\[\sum_{r=1}^{n} u_r \] is read as:

‘the sum of \(u_r \) from \(r = 1 \) to \(r = n \)’ or ‘sigma \(u_r \) from \(r = 1 \) to \(r = n \)’.

(last value of \(r \) in the series)

\[\sum_{r=1}^{30} u_r = u_1 + u_2 + u_3 + \cdots + u_{19} + u_{20} \]

(general term) (\(\cdots \) indicates more terms)

(first value of \(r \) in the series)

The values of \(r \) increase in steps of 1 from the first term to the last term.

\[\sum_{r=3}^{8} u_r = u_3 + u_4 + u_5 + u_6 + u_7 + u_8 \]

i.e., start at the third term, \(u_3 \), finish at the eighth term, \(u_8 \), and add these terms.

The notation can also be used to describe an infinite series.

\[\sum_{r=1}^{\infty} u_r = u_1 + u_2 + u_3 + \cdots + u_n + \cdots \]

(\(\cdots \) indicates that the series continues indefinitely)

In this notation, \(\infty \) indicates that there is no upper limit for \(r \).

Note: \(S_1 = u_1 \), \(S_2 = u_1 + u_2 \), \(S_3 = u_1 + u_2 + u_3 \), etc.

Example

Evaluate: (i) \[\sum_{r=0}^{5} (2r+1) \] (ii) \[\sum_{r=1}^{4} (-1)^{r+1} 2^r \]

Solution:

\[\sum_{r=0}^{5} (2r+1) = [2(0)+1] + [2(1)+1] + [2(2)+1] + [2(3)+1] + [2(4)+1] + [2(5)+1] \]

\[= (0+1) + (2+1) + (4+1) + (6+1) + (8+1) + (10+1) \]

\[= 1 + 3 + 5 + 7 + 9 + 11 \]

\[= 36 \]

\[\sum_{r=1}^{4} (-1)^{r+1} 2^r = (-1)^{1+1}(2)^1 + (-1)^{2+1}(2)^2 + (-1)^{3+1}(2)^3 + (-1)^{4+1}(2)^4 \]

\[= (-1)^2(2) + (-1)^3(4) + (-1)^4(8) + (-1)^5(16) \]

\[= (1)(2) + (-1)(4) + (1)(8) + (-1)(16) \]

\[= 2 - 4 + 8 - 16 \]

\[= -10 \]
Notice that in the second example the series alternates between positive and negative terms.

\((-1)^k = 1\) when \(k\) is even.
\((-1)^k = -1\) when \(k\) is odd.

Find \(u_n\) when Given \(S_n\)

\[
S_n = u_1 + u_2 + u_3 + \cdots + u_n + u_{n-1}
\]

\[
S_{n-1} = u_1 + u_2 + u_3 + \cdots + u_{n-1}
\]

\[
S_n - S_{n-1} = u_n \quad \text{(subtracting)}
\]

If \(S_n = u_1 + u_2 + u_3 + \cdots + u_n\), then:

\[
u_n = S_n - S_{n-1}
\]

This gives us a nice method to find the general term, \(u_n\), when given \(S_n\) in terms of \(n\).

Example

\[
S_n = u_1 + u_2 + u_3 + \cdots + u_n
\]

If \(S_n = 2n^2 - 3n\), find an expression for \(u_n\), and hence find \(u_{10}\).

Solution:

\[
S_n = 2n^2 - 3n
\]

\[
S_{n-1} = 2(n-1)^2 - 3(n-1)
\]

(Replace \(n\) with \((n-1)\))

\[
= 2(n^2 - 2n + 1) - 3(n - 1)
\]

\[
= 2n^2 - 4n + 2 - 3n + 3
\]

\[
= 2n^2 - 7n + 5
\]

\[
u_n = S_n - S_{n-1}
\]

\[
= (2n^2 - 3n) - (2n^2 - 7n + 5)
\]

\[
= 2n^2 - 3n - 2n^2 + 7n - 5
\]

\[
u_n = 4n - 5
\]

Thus, \(u_{10} = 4(10) - 5 = 40 - 5 = 35\).

Exercise 7.2

Evaluate each of the following:

1. \(\sum_{r=1}^{6} (2r + 1)\)
2. \(\sum_{r=0}^{5} (3r - 2)\)
3. \(\sum_{r=1}^{6} r^2\)
4. \(\sum_{r=1}^{5} n(n + 1)\)
5. \(\sum_{r=1}^{4} (-1)^{r+1} r^3\)
6. \(\sum_{r=0}^{6} (-1)^r 2^r\)
7. Evaluate: (i) \(\sum_{r=2}^{5} (-1)^r(r+1)(r+3) \)
 (ii) \(\sum_{r=3}^{7} \frac{(-1)^r}{r-1} \).

8. For a sequence, \(u_n = 2n + 5 \). Find:
 (i) \(S_1 \)
 (ii) \(S_4 \).

9. For a sequence, \(u_n = 3(2)^n \). Find:
 (i) \(S_2 \)
 (ii) \(S_3 \).

10. For a sequence, \(u_n = \frac{n}{n+1} \). Find the value of \(S_3 \).

In each of the following find \(u_n \), given \(S_n = u_1 + u_2 + u_3 + \cdots + u_n \):

11. \(S_n = n^2 + 2n \)
 12. \(S_n = n^2 - 5n \)
 13. \(S_n = 2n^2 + n \)

14. For the series \(S_n = u_1 + u_2 + \cdots + u_n \), \(S_n = \frac{n(n+1)}{2} \).

Find: (i) \(S_{n-1} \)
 (ii) \(u_n \)
 (iii) \(u_{20} \).

15. For the series \(S_n = u_1 + u_2 + \cdots + u_n \), \(S_n = 2^n \).

Find: (i) \(S_{n-1} \)
 (ii) \(u_n \)
 (iii) \(u_{10} \)
 (iv) \(\sqrt{u_5} \).

16. For the series \(S_n = u_1 + u_2 + \cdots + u_n \), \(S_n = 2(2)^n + n^2 \).

Find an expression for \(u_n \) and, hence, evaluate \(u_5 \).

Arithmetic Sequences and Series

Consider the sequence of numbers 2, 5, 8, 11, \ldots

Each term, after the first, can be found by adding 3 to the previous term.

This is an example of an arithmetic sequence.

A sequence in which each term, after the first, is found by adding a constant number is called an **arithmetic sequence**.

The first term of an arithmetic sequence is denoted by \(a \).

The constant number, which is added to each term, is called the **common difference** and is denoted by \(d \).

Consider the arithmetic sequence 3, 5, 7, 9, 11, \ldots

\[a = 3 \quad \text{and} \quad d = 2 \]

Each term after the first is found by adding 2 to the previous term.

Consider the arithmetic sequence 7, 2, -3, -8, \ldots

\[a = 7 \quad \text{and} \quad d = -5 \]

Each term after the first is found by subtracting 5 from the previous term.

In an arithmetic sequence the common difference, \(d \), between any two consecutive terms is always the same.

Any term - previous term = \(u_n - u_{n-1} = \) constant = \(d \).
If three terms, \(u_n, u_{n+1}, u_{n+2} \), are in arithmetic sequence, then:

\[
\frac{u_{n+2} - u_{n+1}}{u_{n+1} - u_n} = a
\]

General Term of an Arithmetic Sequence

In an arithmetic sequence \(a \) is the first term and \(d \) is the common difference. Thus, in an arithmetic sequence:

\[
\begin{align*}
 u_1 &= a \\
 u_2 &= a + d \\
 u_3 &= (a + d) + d = a + 2d \\
 u_4 &= (a + 2d) + d = a + 3d \\
 & \text{and so on.}
\end{align*}
\]

Notice that the coefficient of \(d \) is always one less than the term number. Thus, the general term of an arithmetic sequence is given by:

\[
u_n = a + (n-1)d
\]

For example: \(u_8 = a + 7d \), \(u_{10} = a + 9d \).

Note: If \(u_n = pn + q \), where \(p \) and \(q \) are constants, then the sequence is arithmetic.

Arithmetic Series

If the sequence \(u_1, u_2, u_3, \ldots, u_n \) is arithmetic, then the corresponding series, \(S_n = u_1 + u_2 + u_3 + \cdots + u_n \), is an arithmetic series.

The formula for \(S_n \) of an arithmetic series can be written in terms of the first term, \(a \), and the common difference, \(d \).

\[
S_n = \frac{n}{2} [2a + (n-1)d].
\]

To derive this result:

\[
\begin{align*}
S_n &= a + (a + d) + \cdots + [a + (n-2)d] + [a + (n-1)d] \\
S_n &= [a + (n-1)d] + [a + (n-2)d] + \cdots + [a + d] + [a] \\
2S_n &= [2a + (n-1)d] + [2a + (n-1)d] + \cdots + [2a + (n-1)d] + [2a + (n-1)d] \\
2S_n &= n[2a + (n-1)d] \\
S_n &= \frac{n}{2} [2a + (n-1)d]
\end{align*}
\]
Once we find the first term, \(a \), and the common difference, \(d \), we can answer any question about an arithmetic sequence or series.

Note: If \(S_n = pn^2 + qn \), where \(p \) and \(q \) are constants, then the series is arithmetic.

Example

If \(k + 2, 2k + 3, 5k - 2 \) are three consecutive terms in an arithmetic sequence, find the value of \(k \), \(k \in \mathbb{R} \).

Solution:

We use the fact that in an arithmetic sequence the difference between any two consecutive terms is always the same.

Thus:

\[
\begin{align*}
\frac{u_{n+2} - u_{n+1}}{u_{n+1} - u_n} &= \text{(common difference)} \\
(5k - 2) - (2k + 3) &= (2k + 3) - (k + 2) \\
5k - 2 - 2k - 3 &= 2k + 3 - k - 2 \\
3k - 5 &= k + 1 \\
2k &= 6 \\
k &= 3
\end{align*}
\]

Check: When \(k = 3 \), the terms are 5, 9, 13, which are in arithmetic sequence.

Example

In an arithmetic series, the sum of the first six terms is given by \(S_6 = 57 \) and the fifth term is given by \(u_5 = 14 \).

Find the first term, \(a \), and the common difference, \(d \).

Solution:

\[
S_n = \frac{n}{2}[2a + (n - 1)d]
\]

Given:

\[
\begin{align*}
S_6 &= 57 \\
\therefore \quad \frac{6}{2}(2a + 5d) &= 57 \\
3(2a + 5d) &= 57 \\
2a + 5d &= 19 \quad \text{①}
\end{align*}
\]

We now solve the simultaneous equations ① and ② to find \(a \) and \(d \).

\[
\begin{align*}
2a + 8d &= 28 \quad \text{③} \times 2 \\
-2a - 5d &= 19 \quad \text{③} \times -1 \\
3d &= 9 \\
d &= 3
\end{align*}
\]

Thus, the first term is \(a = 2 \) and the common difference is \(d = 3 \).
Example

Find the sum of the series $5 + 8 + 11 + \cdots + 65$.

Solution:

We are given $a = 5$ and $d = 3$. We need to find which term of the series is 65.

Given:

\[
\begin{align*}
u_n &= 65 \\
\therefore a + (n - 1)d &= 65 & \text{(we know } a \text{ and } d; \text{ find } n) \\
5 + (n - 1)(3) &= 65 & \text{(put in } a = 5 \text{ and } d = 3) \\
5 + 3n - 3 &= 65 \\
3n + 2 &= 65 \\
3n &= 63 \\
\therefore n &= 21
\end{align*}
\]

Thus, there are 21 terms in the series. We need to find S_{21}.

\[
\begin{align*}
S_n &= \frac{n}{2} [2a + (n - 1)d] \\
S_{21} &= \frac{21}{2} [2(5) + (20)(3)] \\
&= \frac{21}{2} (10 + 60) \\
&= \frac{21}{2} (70) \\
&= 735
\end{align*}
\]

To verify that a sequence is arithmetic, we must show the following:

\[u_n - u_{n-1} = \text{constant}.\]

To show that a sequence is not arithmetic, it is necessary only to show that the difference between any two consecutive terms is not the same. In practice, this usually involves showing that $u_3 - u_2 \neq u_2 - u_1$ or similar.

Example

(i) The nth term of a sequence is $u_n = 3n - 2$. Verify that the sequence is arithmetic.

(ii) The nth term of a sequence is $u_n = n^2 - 2n + 5$. Verify that the sequence is not arithmetic.

Solution:

(i) \[
\begin{align*}
u_n &= 3n - 2 \\
u_{n-1} &= 3(n - 1) - 2 \\
&= 3n - 3 - 2 \\
&= 3n - 5
\end{align*}
\]

(ii) \[
\begin{align*}
u_n &= n^2 - 2n + 5 \\
u_{n-1} &= (n - 1)^2 - 2(n - 1) + 5 \\
&= n^2 - 2n + 1 - 2n + 2 + 5 \\
&= n^2 - 4n + 8
\end{align*}
\]